
High-speed Conversion of Floating Point Images to 8-bit (online ID 0265)

Bill Spitzak, Digital Domain∗

Introduction

Most rendering software today destroys precise lighting and shad-
ing calculations by doing an inaccurate and low-quality conversion
to bytes for display devices. This sketch presents a technique1 to
quickly convert floating point data to a screen image while preserv-
ing the correct brightness levels and original detail.

Screen Gamma

A common misconception of how monitors work is the amount
of light emitted by the screen is in linear proportion to the
number placed into the image buffer, and that multiplying float-
ing point pixel colors by 255 will produce the screen image.
However a power function is the correct mapping and has been
standardized[1]. The proper way to convert a floating point bright-
ness is to use the inverse of sRGB and multiply that by 255:

to byte(x) = 255×
{

12.92x if x ≤ .04045/12.92

1.055x1/2.4 − .055 if x > .04045/12.92

It may also be desirable to present high dynamic range image
data by compressing the high end. There are many ways to do this.
One possibility is:

to byte compressed(x) =

{
to byte(x) if x ≤ .5
to byte(1− 1/4x) if x > .5

Figure 1:to byte (black) andto byte compressed (gray)

Since the domain ofto byte compressed() is from zero to in-
finity we would like our conversion to be able to handle this.

Look-up Table

A look-up table indexed by the top 16 bits of the floating point
numbers is used to avoid the need for conditional expressions or
calls to pow(). This table, however, is quite large as there are
65536 entries. If this is a concern the table can be made smaller
by adding range checks to the algorithm. Limiting the table to
.04045/12.92 ≤ x ≤ 1 (and linearly interpolating outside that
range) would reduce the number of entries to 1065.

To fill the table a floating point number is constructed with the
correct high 16 bits and the lower bits set to 0x8000, which is
halfway through the range that maps to that table entry. This re-
quires care on processors that trap NaN or otherwise fail on some
bit patterns in floating point. Some compilers may also have trouble

∗spitzak@d2.com
1GPL code is available at http://www.cinenet.net/ spitzak/conversion

loading arbitrary bit patterns into floating point registers. The float-
ing point value is then converted to a byte, rounded and clamped,
and stored in the table.

How accurate is this table? The distance between output values
of the table is∆y(x) = 2bln x/ ln 2c−7d(to byte)/dx. The maxi-
mum∆y(x) when0 ≤ x < 1 is at .5 and is≈ .656. Thus every
possible byte value is represented, and if values are calculated at
the center of the table entries the maximum error is less than1/3
of an output value. At common image levels the error is smaller, at
18% gray the maximum error is.15.

Error Diffusion

Floating point data can represent fine gradations in color that are
lost if the values are simply rounded to the nearest byte value. An
error diffusion algorithm is used to solve this. Most algorithms
are designed to reduce the image to very few levels and involve
the weighted distribution of “error” to four or more neighboring
pixels[2]. With 256 output levels, it is sufficient to transfer all the
error to the next pixel. This allows the conversion of each scan line
to be independent and is of course very simple.

The error information is stored by making the table contain 16-
bit words equal to256×bto byte(x), 255c. The top 8 bits are then
the byte value lower than the desired result and the lower 8 bits are
the error offset. Starting the error at 0x80 results in rounding to the
nearest byte.

This simple dithering would produce vertical lines in solid
shades and horizontal ramps. This was solved by dithering in both
directions away from a randomly chosen starting location. Solid ar-
eas of black or white must not set the error back to zero or vertical
lines will appear in the regions after those.

Preserving 8-bit Data

It is desirable to have 8-bit files converted to floating point and back
to emerge unchanged. If this was not done then repeatedly reading
and writing an 8-bit image would gradually deteriorate it. To en-
force this the table is modified: each 8-bit pixel value is converted
to floating point and the resulting table location is replaced with the
exact integer. Since the error is zero, no dithering happens when
writing the data back out. This reduces the accuracy of the table by
spacing the samples somewhat irregularly. However no entries are
out of order and only 1.6% of the table entries are changed. The
result is that only a small amount of noise is added to the data.

Conclusions

This algorithm has proven to be fast enough for real-time preview
of compositing results. It has also proven that trivial calculations of
blurs and exposure changes in linear floating point produce beau-
tiful and photographically correct results when converted this way.
This technique promises to allow future software to produce physi-
cally accurate pictures quickly and easily.

References

[1] International Electrotechnical Commission. The sRGB Specification.
IEC 61966-2-1.

[2] Floyd, R., and Steinberg, L. An Adaptive Algorithm for Spatial Gray
Scale.Society for Information Display 1975 Symposium Digest of Tech-
nical Papers, page 36, 1975


